Abstract

An experimental study was conducted to improve the steady-state thermal performance of a loop heat pipe (LHP) under high heat fluxes by employing a bypass line. The LHP had a sintered metal wick and a flat evaporator, of which the planar dimensions were 40mm×50mm. The wall and tubing system were made of stainless steel, and distilled water was used as the working fluid. The bypass line was installed between the vapor channel of the evaporator and the liquid reservoir to control the thermal performance of the LHP. A control valve was placed in the bypass line to enable changing between the normal and bypass line operation modes. An experimental investigation was conducted to identify the effect of the bypass line on the LHP performance, from the viewpoints of the temperatures at representative points and the thermal resistance. The steady-state performances of the LHPs with and without the bypass line were analyzed and compared with each other, under thermal loads of 100 W–260 W (21.2 W/cm2). Typical results showed that the evaporator wall temperature was decreased by approximately 45 °C, resulting in reduction of thermal resistance by 28.1 %, for the LHP with the bypass line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.