Abstract

Extensive attention has been drawn in generating multimode quantum states in recent years. Many efforts have been made during the last decade to produce such states. In this paper, we have experimentally demonstrated a scheme for generating a multi-spatial-mode quantum light source by a non-degenerated four-wave mixing process with a conical pump and a conical probe in a hot atomic vapor cell. The degree of the intensity-difference squeezing between the generated twin beams is about −4.1 dB. Due to the similar conical shape of the concentric quantum correlated beams, both the amplified probe and the generated conjugate beams can be decomposed into many angular modes. We have also experimentally verified the multi-spatial-mode nature of the generated quantum correlation by comparing the noise levels' variation tendencies of global attenuation and local cutting attenuations. In addition, we have also found the optimal values of each parameter in this scheme for further applications. Due to our scheme's advantages such as compactness, phase-insensitivity, and easy scalability, we have already shown a promising candidate for generating multi-spatial-mode quantum states, which may find potential applications in quantum metrology and quantum imaging, such as quantum-enhanced superresolution and the generation of multiple quantum correlated images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call