Abstract

In this letter, we reported the experimental observation of a photonic hook (PH)—a type of near-field curved light generated at the output of a dielectric cuboid, featuring a broken symmetry and dimensions comparable to the electromagnetic (EM) wavelength. Given that the specific value of the wavelength is not critical once the mesoscale conditions for the particle are met, we verified these predictions experimentally using a 0.25 THz continuous-wave source. The radius of curvature associated with the PH-generated is smaller than the wavelength, while its minimum beam-waist is about 0.44λ. This represents the smallest radius of curvature ever recorded for any EM beam. The observed phenomenon is of potential interest in optics and photonics, particularly, in super-resolution microscopy, manipulation of particles and liquids, photolithography, and material processing. Finally, it has a universal character and should be inherent to acoustic and surface waves, electrons, neutrons, protons, and other beams interacting with asymmetric mesoscale obstacles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call