Abstract

In order to obtain a finite element (FE) model that can more accurately describe structural behaviors, experimental data measured from the actual structure can be used to update the FE model. The process is known as FE model updating. In this paper, a frequency response function (FRF)-based model updating approach is presented. The approach attempts to minimize the difference between analytical and experimental FRFs, while the experimental FRFs are calculated using simultaneously measured dynamic excitation and corresponding structural responses. In this study, the FRF-based model updating method is validated through laboratory experiments on a four-story shear-frame structure. To obtain the experimental FRFs, shake table tests and impact hammer tests are performed. The FRF-based model updating method is shown to successfully update the stiffness, mass and damping parameters of the four-story structure, so that the analytical and experimental FRFs match well with each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call