Abstract

Surface complexation models use experimental adsorption measurements to calculate stability constants that quantify the thermodynamic stability of adsorbed species. However, these constants are often poorly constrained due to nearly complete removal of the solute from solution and/or because the tested adsorbate:adsorbent ratios are not varied sufficiently. Using data sets that quantify the adsorption of U(VI) to multilayered graphene oxide (MLGO), we tested whether three different U(VI):MLGO ratios (3 ppm U; 20-210 mg L-1 MLGO) affect the ability of nonelectrostatic and diffuse layer models to predict U(VI) adsorption behaviors across a range of ionic strength (1-100 mM) and pH (2-9.5) conditions. Model formulations assumed interactions between discrete MLGO surfaces sites and the most abundant aqueous U(VI) complex(es) within a given pH range. We determined that the observed extents of U(VI) binding require adsorption of more than one U(VI) species (UO22+ and uranyl hydroxide(s) and/or carbonate(s)) and calculated the respective stability constants for the important U(VI)-MLGO surface complexes. The results also unequivocally illustrated that models using adsorption data from treatments with higher U(VI):MLGO ratios provide better fits throughout the tested range of experimental conditions, meaning that the U(VI)-MLGO stability constants calculated herein can be confidently applied to a range of natural or engineered systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call