Abstract
The solubility of benzoic and salicylic acids was measured at a temperature range from 293 to 333 K in two types of water based nanofluids employed as the solvent. Silica and γ-alumina nanoparticles with volume concentrations of 0.025, 0.05, 0.1, 0.2 and 0.4 % were dispersed into de-ionized water as the based fluid. The results revealed that the solubility of nanofluid followed the same trend as pure water solubility with increasing temperature. At low temperatures, below 330 K for γ-Al2O3 nanofluids and 323 K for SiO2 nanofluids, nanoparticles had no effect on solubility, but by increasing the temperature, nanofluid solubility decreased. The maximum reduction in the solubility of compounds was observed at the temperature of 333 K and in 0.1 % γ-Alumina nanofluid and 0.025 % Silica nanofluids. Nanofluids solubility decreased up to a critical nanoparticles concentration while increased by increasing nanoparticles concentration further. The maximum reduction of nanofluids solubility at critical concentration was about 12.43 % for salicylic acid and 10.24 % for benzoic acid in 0.025 % SiO2 nanofluid. Nanofluids solubility was found to be strongly dependent on nanoparticles size. Bigger nanoparticles were more effective than smaller ones on nanofluids solubility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have