Abstract

Abstract. This study aims to investigate wire electrical discharge machining of copper alloys. Extensive research was done to design an optimum cutting method with adequate wire balance to achieve the requisite surface smoothness and geometrical dimensional correctness. Parameters were used in this work to simulate the process pulse-on time, pulse-off time, peak current, servo feed-rate, servo-volt, wire-feed rate, wire tension, and water pressure. For each given treatment requirement, the primary impacting elements are highlighted. The results are the best standard settings that have been designed to satisfy the client’s varied developing needs. A low pulse achieves superior surface polish on time and a high pulse off time. According to the (ANOVA) findings, the most significant cutting parameter is the pulse on-time (Ton), which affects surface roughness by (42.922)%, followed by pulse off time (Toff), which affects surface roughness by (24.860)%, and servo feed (SF), which affects surface roughness by (6.850)%. The impact of the process variables was wire tension on response characteristics, dimensional deviation, cutting rate, and surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call