Abstract

Purpose In the present study, wire electro-discharge machining (WEDM) of Inconel 625 (In-625) is performed with the machining parameter such as spark-on time, spark-off time, wire-speed, wire tension and servo voltage. The purpose of this study is to find the most favorable machining parameter setting with respect to WEDM performance such as material removal rate (MRR) and surface roughness (RA). Design/methodology/approach Taguchi’s L27 orthogonal array has been used to design the experiments with varying machining parameters into three-level four factors. A hybrid multi-optimization technique has been purposed with grey relation analysis and fuzzy inference system integrated with teaching learning-based optimization to achieve optimum machinability (MRR and RA in present case). The obtained result has been compared with two evolutionary optimization tools via a genetic algorithm and simulated annealing. Findings It has been found that proposed hybrid technique taking minimum computational time, provide better solution and avoid priority weightage calculation by decision-makers. A confirmation test has been performed at single and multi-optimal parameter settings. The decision-makers have been chosen to select any single or multi-parameter setting as per the industry’s demand. Originality/value The proposed optimization technique provides better machinability of In-625 using zinc-coated brass wire electrode during WEDM operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call