Abstract

The drag torque caused by the viscous shear in open multiplate wet clutches has been studied in most available literature whose focus is placed on low circumferential speed. However, the drag torque increases drastically in the high circumferential speed range. The underlying physical principles and the influencing factors of the drag torque at high speed are still indeterminate. The present study aims to experimentally investigate the characteristics of the wobbling vibrations of plates and to characterize the effects of average clearance, flow rate of lubricant, shifting condition, and the number of friction interfaces on the drag torque at high circumferential speed. The result of the experiment reveals that the friction plate (FP) starts to wobble periodically at low circumferential speed, though the effect is insignificant. The dominant frequency of plate wobbling movements increases with the input speed. When wobbling vibrations of plates become unstable, the wobble gradually becomes nonlinear. The experiments confirm that the mechanical contacts between plates during the unstable wobbling vibration result in the drag torque rise at high circumferential speed. At high speed, the supplying flow rate of the lubricant influences the drag torque values. The rotation of separator plates (SPs) brings forward the torque rise and makes the drag torque rise smoother. By reducing the number of interfaces, the drag torque rise is delayed and the magnitude becomes smaller. Finally, a four-stage drag torque characteristic curve is illustrated to show the dominant factors of drag torque at different stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call