Abstract
The reduction of drag torque is an important issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because viscous automatic transmission fluid flow narrow gap between friction plate and separate plate. The main purpose of this study is to observe the effects of the various parameters on the drag torque using finite element simulation. In this study, the simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. Depth of groove on the friction plate plays an important role in controlling drag torque peak. An increase in the depth of groove causes a decrease in shear stress; thus, the drag torque also decreases according to Newton’s law of viscosity. Also, an observation of the effect of the angle of groove pattern shape shows that the drag torque changes with groove pattern shape. Therefore, the optimum angle of the groove pattern should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.