Abstract
Large-scale underground oil storage is vital for addressing the energy crisis. Leveraging the insoluble sediment space at the bottoms of salt caverns for oil storage is particularly effective in high-impurity salt mines, enhancing oil storage capacity. The process of extracting oil from the sediment void is essential for utilizing this resource. Three experimental devices were developed to investigate this extraction process. We conducted experiments on oil extraction processes and rates for various oil types, analyzing weight changes and influencing factors. The sediment and water content in the extracted oil were also evaluated. Results indicated that extracting oil from the sediment void is feasible, yielding average recovery rates over 90.0 %. High-viscosity oil at 50 °C exhibited three stages: initial stability, a rapid rise, and final stability. Low-viscosity oil correlated with brine injection rates, displaying a rapid rise, stable phase, and subsequent decline. Petrolatum extraction was easier than diesel extraction, and ground temperature improved recovery rates. Changes in water and sediment content had minimal impact on oil quality. This research provides insights for large-scale underground energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.