Abstract

In this study, an experimental work was directed toward comparing the flexural behavior of solid and hollow steel fiber‐reinforced concrete beams. For this purpose, eight square cross‐sectional beam specimens, four solid and four hollow, were prepared. One concrete mixture with four different steel fiber contents of 0, 0.5, 1.0, and 1.5% were used. The side length of the central square hole was 80 mm, whereas the cross‐sectional side length was 150 mm. All beams were tested under four‐point monotonic loading until failure. In addition to the solid and hollow beams, cylinders were cast to evaluate the compressive strength, splitting tensile strength, and modulus of elasticity, whereas prisms were used to conduct the fracture test. The test results showed that all fibrous beams failed in flexure, whereas those without fiber exhibited flexural‐shear failure. In general, the flexural behavior of fibrous‐beams was superior to that of beams without fiber. The hollow beams with fiber contents of 0, 0.5, and 1.0% were observed to withstand lower loads at cracking, yielding, and peak stages compared with their corresponding solid beams; this was not the case for the 1.5% fiber hollow beam, which exhibited a higher peak load than its corresponding solid beam. Although all eight beams exhibited ductility indices higher than 3.7, hollow beams exhibited better ductility than solid beams, showing higher ductility index values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.