Abstract

Flue gas recirculation sintering process is a potential technology to decrease fuel consumption and NOx emissions compared with conventional sintering process. In present work, a vertical quartz tube reactor was used to investigate the combustion characteristics and conversion of fuel-N to NOx of quasi-particle. The mass conversion rate of quasi-particle increases with higher temperature. It was found that D1 model is more appropriate than other models to describe quasi-particle combustion process through comparing correlation coefficients calculated by different mechanism models. Effects of temperature, coke size and proportion, circulating flue gas components on the conversion of fuel-N to NOx of quasi-particle were studied. The conversion rate of fuel-N to NOx of quasi-particle increases with higher temperature. With increasing coke size and proportion, the conversion rate of fuel-N to NOx decreases obviously. O2 has a positive impact on the conversion of fuel-N to NOx of quasi-particle. CO could decrease the conversion rate of fuel-N to NOx by reducing NO directly or reacting with char to decrease NOx indirectly. CO2 has an obviously inhibitory effect on the conversion of fuel-N to NOx of quasi-particle because it reacts with char to generate CO. The results were conducive to further understanding the combustion behavior and NOx formation mechanism of quasi-particle during flue gas recirculation sintering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call