Abstract
A flow channel structure design plays a significant role in an open-cathode proton exchange membrane fuel cell. The cell performance is sensitive to the structural parameters of the flow field, which mainly affects the heat and mass transfer between membrane electrode assembly and channel. This paper presents theoretical and experimental studies to investigate the impacts of anode flow field parameters (numbers of the serpentine channels, depths, and widths of the anode channel) on cell performance and temperature characteristics. The result indicates that the number of anode serpentine channels adjusts the pressure and flow rate of hydrogen in the anode flow channel effectively. The depth and width of the channel change the pressure, flow rate, and mass transfer capacity of hydrogen, especially under the high current density. There appears the best depth to achieve optimum cell performance. The velocity and concentration of hydrogen have important influences on the mass transfer which agrees with the anode channel structure design and performance changes based on the field synergy principle. This research has great significance for further understanding the relationship between anode flow field design and fuel cell performance in the open-cathode proton exchange membrane fuel cell stack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.