Abstract

The efficiency of solar PV panels varies depending on various factors; the type of material used to generate electrical energy, the quality of workmanship in the solar PV panel installation, environmental factors, dirt on the PV panel and design. Dust and dirt formed according to environmental conditions adhere to the solar PV panels and prevent the solar radiation from penetrating the surface. Thus, the solar PV panels need to be cleaned. In this study, three different chemical solutions prepared in laboratory conditions are applied to solar PV panels with a solar PV panel cleaning robot, which is manufactured using 3D printer technology to remove dust and dirt accumulated on solar PV panels for the first time in the literature. Thus, the effectiveness of chemical solutions to increase solar PV panel efficiency is demonstrated. The penetration of chemical solutions on the PV panel surface is ensured by the solar PV panel cleaning robot. The experimental set is realized under natural dust and dirt conditions. The effectiveness of the chemical solutions and electrical performance analysis results of solar PV panels are demonstrated by measurements and tests. The amount of power harvested from the PV panel cleaned using proposed Solution 1 (2-propanol) has been increased by 15%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call