Abstract

Effective thermal conduction between solid interfaces has emerged as a major bottleneck in heat dissipating heat from new-generation high-performance electronics. Gallium-based liquid metals (LMs), known for their high thermal conductivity, are gaining significant traction as thermal interface materials (TIMs) for enhanced thermal management. In this work, to address the key issues facing the application of gallium-based LMs as TIMs, including the lack of composition ratio data, poor coating performance and the need for improved thermal conductivity, two types of gallium-based LM-TIMs (Ga-In binary LM-TIMs and Ga-In-Sn ternary LM-TIMs) with different composition ratios were experimentally prepared, investigated and optimized. The thermal conductivities of the LM-TIMs at different temperatures (80 - 120 ℃) were tested, and the application reliability of the LM-TIMs was optimized by continuously destructing the oxide layer and filling micro copper particles. The influence of optimization parameters such as the duration of the destruction of oxide layer, the filling ratios of the particles and the particle size on the operation performance of the LM-TIMs was studied and analyzed. The results showed that the LM-TIMs exhibited excellent thermal conductivities of 29.6 - 38.5 W/(m·K), and the thermal conductivity increased with indium mass fraction and decreased with tin mass fraction. Significant improvements in coating performance were observed with the increase of the duration of destructing oxide layer, but it led to a reduction in thermal conductivity. Balancing coating performance and thermal conductivity, it was found that 30 min was the ideal duration. The filling of micro particles made up for the reduced thermal conductivity, and higher filling ratios and smaller particle sizes achieved better enhancement. In the experiment, a filling ratio of 5 % was appropriate because solidification occurred in LM-TIMs at higher filling ratios which weakened the thermal conductivity. This work provided valuable reference for the application and optimization of high thermal conductive gallium-based LM-TIMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call