Abstract

The purpose of this study is to evaluate and compare the capability of impact energy absorption of the sandwich panels with various chiral auxetic cores. To this end, flat and curved panels were subjected to impact testing at varying energy levels. Glass fiber-reinforced epoxy composites and PLA material were used as the skins and core of the examined sandwich panels, respectively. The face sheets were produced by the hand-layup method and the auxetic cores with tetrachiral, anti-tetrachiral, and hexachiral configurations were printed using a 3D printer. The wall thickness, node diameter, and ligament length of the cells, as well as the core thickness, were kept constant for all the studied core structures. Flat and curved sandwich panels were obtained by combining the skins and cores produced in flat, 100 mm, 125 mm, and 160 mm radii of curvature with the epoxy used in skin production. Drop weight tests were carried out at impact energies of 10, 25, and 80 J. The contribution of the auxetic core configuration and panel curvature to the impact behavior of the sandwich panel was evaluated by examining the relationships between contact forces and deflection and by the analysis of the energy absorption and failure mode. The comparative evaluations showed that the auxetic core structure and the curvature of the panel have a significant effect on the impact properties of the sandwich panels. It was also observed that the use of tetrachiral cores could be the ideal design option for flat panels loaded at the perforation energy level. For curved panels, it was determined that the use of a hexachiral core configuration was advantageous in terms of more energy absorption capability, while the use of an anti-tetrachiral core structure was more effective in terms of specific energy absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.