Abstract

The adsorption cold thermal energy storage (TES) system was investigated for space cooling application by considering both energy and exergy analysis. With regeneration temperature of 70 °C, ambient temperature of 30 °C, heat transfer fluid (HTF) inlet temperature for evaporator 30 °C, the cold energy storage density (ESD) achieved was approximately 400 kJ kg−1 with energy efficiency of 44.6%. In addition, the exergy efficiency was 4.5%, and the loading difference was 0.165 (adsorbate/adsorbent). As the HTF mass flow rate of the evaporator was decreased, the evaporator HTF outlet temperature decreased, and the exergy efficiency increased. As the evaporator HTF inlet temperature and the regeneration temperature were increased, the cold ESD, cold thermal efficiency and cold exergy destruction all increased. As the adsorption HTF inlet temperature was decreased, the cold ESD, and recovered exergy increased. The evaporator chamber HTF inlet temperature affected more on energy and exergy performances than that of the evaporator chamber HTF mass flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.