Abstract
In this study, timber column–sill joints strengthened with carbon fiber-reinforced plastic (CFRP) plates using bonds and screws were subjected to loading tests. Twelve joint specifications were considered depending on different combinations of the CFRP plate surface finish and thickness and the type of bond, and the corresponding effects on the load–displacement behavior of the joints were investigated. Three failure modes were observed in addition to the peeling of the CFRP plate. The specimens that failed owing to screw tear out and screw head pull-through in the CFRP plate or splitting of the sill showed load–displacement curves of a similar shape. Those that failed owing to buckling of the CFRP plate showed a rapid and substantial load decrease due to failure. This failure mode was only observed in 0.50 mm thick CFRP plate specimens. When a peel-ply CFRP plate was installed in the column–sill joint specimens, similar secant stiffnesses were observed in the silicon and epoxy resin-bonded specimens, both with high shear strength. Although the specimens with bonds with a high shear strength showed lower deformation performance, the specimens' maximum load increased with the bond's shear strength. The maximum load improved for a 0.75 mm thick peel-ply silicon- or epoxy-bonded CFRP plate. The load's maximum value after peeling the CFRP plate was 0.79–1.23 times as large as the maximum load of the no-bond specimens and did not change significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.