Abstract
The carbon fiber-reinforced plastic (CFRP) plate bonding is a method in which CFRP plates are bonded by mean of epoxy resin to the surface of existing reinforced concrete (RC) structures. This method permits the insufficient amount of steel bars in the section of the structural member to be compensated externally. Therefore, it is considered that this method will become widely used under a corrosive environment since the CFRP plate is rust-proof.In this study, the strength and deformation characteristics of the RC beam strengthened with a CFRP plate under static and fatigue loading were dealt with. The experiments revealed the mode of failure for the beam bonded with a CFRP plate and subjected to static incremental loading to be flexural failure, and both the flexural rigidity and ultimate strength to increase. The fatigue failure for the beam bonded with a CFRP plate under the repetitive loading was not produced by the fatigue fracture of CFRP plate but by that of steel bars. The fatigue strength at 2×106 cycles of load repetition for the RC beam bonded with a CFRP plate was 57 percent of the static strength of the same beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Society of Materials Science, Japan
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.