Abstract

Light-emitting diode- (LED-) based visible light communication (VLC) has become a potential candidate for next generation high-speed indoor wireless communication. Due to the limited modulation bandwidth of the LED, orthogonal frequency division multiplexing (OFDM) modulation is particularly preferred in the VLC system to overcome the ISI, which suffers from the high peak-to-average power ratio (PAPR) and leads to severe performance loss. In this paper, we propose and experimentally demonstrate a novel Zadoff-Chu matrix (ZCM) precoding scheme, which can not only reduce the PAPR, but also provide uniform signal-to-noise ratio (SNR) profile. The theoretical analysis and simulation show that the proposed scheme achieves better PAPR performance compared with the traditional precoding schemes. The experimental demonstration further validates the bit error rate (BER) performance improvement, where the measured BERs are all below the 7% pre-forward error correction (pre-FEC) limit of 3.8 × 10−3 when the transmitted data rate is 50 Mb/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.