Abstract

The orthogonal frequency division multiplexing (OFDM) modulation technique has been used widely in visible light communications (VLC) systems to combat intersymbol interference. At the same time, the inherent drawback of OFDM with a high peak-to-average power ratio (PAPR) is brought into OFDM visible light communications (VLC-OFDM). Furthermore, considering the limited dynamic range characteristics of light-emitting diodes, the performance degradation caused by a high PAPR is more serious in VLC-OFDM. In this paper, we propose a partial transmit sequence (PTS) technique based on the combination of a genetic algorithm (GA) and a hill-climbing algorithm (GH-PTS) to solve the problem of high PAPR. GH-PTS is a modified PTS technique based on GA-PTS. Essentially, GH-PTS is a local optimization of GA-PTS. Simulation results show that the optimized technique is able to reduce PAPR more effectively without any loss of bit error rate performance than the GA-PTS technique in VLC-OFDM system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.