Abstract

Vibration is an essential subject for the design of rotordynamic systems, being responsible for compromising the integrity and causing risks to operational functioning. This work deals with an experimental investigation of the semi-active vibration controller for a rotordynamic system using shape memory alloy (SMA) elements. SMAs are smart materials that present thermomechanical coupling represented by solid phase transformations that promote either stiffness change or hysteretic dissipation. In this regard, they are useful in controllers employing thermal actuation from electric current through the Joule effect. This paper presents a proof of concept of a controller using SMA elements. An experimental apparatus is proposed considering a typical rotor system using SMA wires at the bearings. In this regard, proper temperature variations allow the system to cross critical resonant conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call