Abstract
Abstract An uncommon facet of Formation Evaluation is the assessment of flow-related in situ properties of rocks. Most of the models used to describe two-phase flow properties of porous rocks assume homogeneous and/or isotropic media, which is hardly the case with actual reservoir rocks, regardless of scale; carbonates and grain-laminated sandstones are but two common examples of this situation. The degree of spatial complexity of rocks and its effect on the mobility of hydrocarbons are of paramount importance for the description of multiphase fluid flow in most contemporary reservoirs. There is thus a need for experimental and numerical methods that integrate all salient details about fluid-fluid and rock-fluid interactions. Such hybrid, laboratory-simulation projects are necessary to develop realistic models of fractional flow, i.e., saturation-dependent capillary pressure and relative permeability. We document a new high-resolution visualization technique that provides experimental insight to quantify fluid saturation patterns in heterogeneous rocks and allows for the evaluation of effective two-phase flow properties. The experimental apparatus consists of an X-ray microfocus scanner and an automated syringe pump. Rather than using traditional cylindrical cores, thin rectangular rock samples are examined, their thickness being one order of magnitude smaller than the remaining two dimensions. During the experiment, the core is scanned quasi-continuously while the fluids are being injected, allowing for time-lapse visualization of the flood front. Numerical simulations are then conducted to match the experimental data and quantify effective saturation-dependent relative permeability and capillary pressure. Experimental results indicate that flow patterns and in situ saturations are highly dependent on the nature of the heterogeneity and bedding-plane orientation during both imbibition and drainage cycles. In homogeneous rocks, fluid displacement is piston-like, as predicted by the Buckley-Leverett theory of fractional flow. Assessment of capillary pressure and relative permeability is performed by examining the time-lapse water saturation profiles. In spatially complex rocks, high-resolution time-lapse images reveal preferential flow paths along high permeability sections and a lowered sweep efficiency. Our experimental procedure emphasizes that capillary pressure and transmissibility differences play an important role in fluid-saturation distribution and sweep efficiency at late times. The method is fast and reliable to assess mixing laws for fluid-transport properties of rocks in spatially complex formations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have