Abstract

This study experimentally explores the energetics for the formation of boron-imidazolate frameworks (BIFs), which are synthesized by mechanochemistry. The topologically similar frameworks employ the same tetratopic linker based on tetrakis(imidazolyl)boric acid but differ in the monovalent cation metal nodes. This permits assessment of the stabilizing effect of metal nodes in frameworks with sodalite (SOD) and diamondoid (dia) topologies. The enthalpy of formation from endmembers (metal oxide and linker), which define thermodynamic stability of the structures, has been determined by use of acid solution calorimetry. The results show that heavier metal atoms in the node promote greater energetic stabilization of denser structures. Overall, in BIFs the relation between cation descriptors (ionic radius and electronegativity) and thermodynamic stability depends on framework topology. Thermodynamic stability increases with the metallic character of the cation employed as the metal node, independent of the framework topology. The results suggest unifying aspects for thermodynamic stabilization across MOF systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.