Abstract
Two ferritic stainless steels (≈16.5 mass pct Cr) were hot-rolled using seven subsequent passes. The first sample was rolled within the range 1280 °C to 750 °C,i.e., the deformation started in the ferritic region. The second sample was rolled within the range 1080 °C to 770 °C,i.e., the deformation started in the ferritic-austenitic region. In both cases, up to 40 vol pct of the ferrite transformed into austenite during hot rolling. During the last passes, the austenite transformed into cubic martensite. After hot rolling, these former austenitic regions were identified using a selective etching technique and examined using single orientation determination in the scanning electron microscope. The regions which remained ferritic throughout the hot-rolling process were investigated as well. Whereas the texture of the martensite considerably depended on the hot-rolling conditions, especially on the temperature and on the intervals between the rollings, the texture of the ferrite was less affected. The textures of the martensite were interpreted in terms of the crystallographic transformation rules between austenite and martensite. The textures of the ferrite were discussed in terms of recovery and recrystallization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have