Abstract

Steel-concrete joints are often provided with welded shear studs. However, stress concentrations are induced in the structure due to the welding. Moreover, a reduction in toughness and ductility of the steel and a decreased fatigue endurance of the construction is observed. In this paper the shear bond strength between steel and ultra-high performance concrete (UHPC) without mechanical shear connectors is evaluated through push-out tests. The test samples consist of two sandblasted steel plates with a thickness of 10 mm and a concrete core. The connection between steel and concrete is obtained by a 2-component epoxy resin. Test samples with a smooth adhesive layer are compared with those with an epoxy layer, which is applied with a toothed paddle and/or gritted with small aggregates. In this research, specimens prepared with river gravel, crushed stone, and steel grit are compared and also two different epoxy resins are used. During the tests, the ultimate shear force is recorded as well as the slip between steel and concrete. All test specimens exhibited a concrete-adhesive or concrete failure. Furthermore, test results show that the use of a more fluid epoxy resin improves the anchorage of the gritted aggregates in the adhesive layer, resulting in higher shear bond stresses. No significant difference is found between specimens, gritted with river gravel or crushed stone. Applying the adhesive layer with the toothed paddle in horizontal direction slightly improves the bond behaviour. Finally, the experimental results of the test members with a smooth epoxy layer without gritted aggregates, provide test data for a fracture mechanics approach, which uses a 2D numerical model of the test specimen, composed of steel, epoxy resin, and concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.