Abstract

Nanoparticle emissions continue to catch the attention because of their adverse health effects and their impact on the environment. Internal combustion engines are the major source of particle emissions in urban areas. The legislation proposes a stronger restriction for both diesel and gasoline engines. In particular, the European particle measurement program (PMP) has introduced particle number regulation for both diesel and gasoline engines. Great efforts are then devoted to the reduction of the particle emissions; nonetheless, the mechanisms governing particle formation are still not fully understood, neither for diesel nor for gasoline engines.The aim of the paper is the experimental characterization of particles emitted from a Port Fuel Injection (PFI) gasoline engine in steady state operating conditions. In particular, the impact of engine control variables (i.e. injection time and spark advance) and emissions control technologies (i.e. exhaust gas recirculation—EGR) on particle size and number was deeply investigated. Moreover, the effect of the dilution conditions was also analyzed. The investigation was carried out at the exhaust of a 1242cc PFI spark ignition (SI) engine. The engine test bench was equipped with a full-pass engine control system dSPACE MicroAutoBox and a scanning mobility particle sizer (SMPS) for particle counting and sizing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.