Abstract

An experimental investigation of how interface states effect scanning capacitance microscopy (SCM) measurements is presented. Different sample polishing procedures were used to make SCM samples that would have different interface state densities, but identical oxide thicknesses. By comparing SCM signals of these samples, the effect of interface states could be singled out. The interface states of these SCM samples were found to have an amphoteric energy distribution. The magnitude of the maximum SCM signals (maximum d C/d V in d C/d V versus dc bias, V dc, plots) is independent of the interface-trapped charges, while the full width at half maximum (FWHM) of the d C/d V– V dc curves is broadened with the interface states. The physics of SCM interface states effect is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.