Abstract

Quantitative two-dimensional dopant profiling tools are urgently needed for nowadays semiconductor industry. Scanning Capacitance Microscopy (SCM) holds most promise to become such a tool. The key component of SCM is an ultra high frequency (UHF) capacitance sensor. The output of the sensor has been approximately regarded as dC/dV, the derivative of the capacitance between the SCM tip and the sample versus the applied bias voltage. The SCM dopant profiling involves extracting the dopant profile from the SCM signal using analytic or numerical simulation models of Metal-Oxide-Semiconductor physics. To achieve a quantitative SCM dopant profiling, the operational principle of the whole SCM measurement has to be well understood and correctly included in those models. Recently, experimental evidences show the SCM signal is dramatically affected by many SCM experimental factors, including the behavior of the UHF capacitance sensor. However, till now, very little research has been reported on the behavior of the sensor in SCM measurement of semiconductors. In this paper, we derive an analytic expression of the sensor output, a circuit simulation model of the sensor is established using Advanced Design System 2003, and the dependences of the sensor output on the SCM operational factors are simulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call