Abstract
Steam generator tubes have a history of small cracks and even ruptures, which lead to a loss of coolant from the primary side to the secondary side. These tubes have an important role in reactor safety since they serve as one of the barriers between radioactive and non-radioactive materials of a nuclear power plant. A rupture then signifies the loss of the integrity of the tube itself. Therefore, choking flow plays an integral part not only in the engineered safeguards of a nuclear power plant, but also to everyday operation. There is limited data on actual steam generators tube wall cracks. Here experiments were conducted on choked flow of subcooled water through two samples of axial cracks of steam generator tubes taken from US PWR steam generators. The purpose of the experimental program was to develop database on critical flow through actual steam generator tube cracks with subcooled liquid flow at the entrance. The knowledge of this maximum flow rate through a crack in the steam generator tubes of a pressurized water nuclear reactor will allow designers to calculate leak rates and design inventory levels accordingly while limiting losses during loss of coolant accidents. The test facility design is modular so that various steam generator tube cracks can be studied. Two sets of PWR steam generators tubes were studied whose wall thickness is 1.285 mm. Tests were carried out at stagnation pressure up to 6.89 MPa and range of subcoolings 16.2–59°C. Based on these new choking flow data, the applicability of analytical models to highlight the importance of non-equilibrium effects was examined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have