Abstract

In this paper, a shaft cooling structure of a grinding motorized spindle was designed based on loop thermosyphons. The evaporation and condensation sections of the loop thermosyphons were located on the same tube due to the thermal conductivity of the shaft. The experimental studies on both heat transfer performance and start-up characteristics of a single loop thermosyphon were performed under the special condition. Then, the cooling effect on the shaft was simulated depending on the obtained experimental data. Results demonstrated that the optimal liquid filling rate of a loop thermosyphon ranged between 50 and 60% under the special condition. Furthermore, a critical value of heating power between 20 W and 40 W was found. When the heating power exceeded this value, the temperature of the evaporation section increased rapidly without any fluctuation. The violent fluctuation of temperature at the upper evaporation section could be utilized as an indicator for the heat transfer limit. Finally, according to the simulation, the maximum temperature of the motorized spindle was reduced by approximately 28% under the effect of the designed cooling structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.