Abstract
In this study, a stable hydrophilic thin layer resembling SiOx is formed on the copper surface by combining plasma polymerization using hexamethyldisiloxane (HMDSO) and Ar plasma activation. The effect of coating on the Heat Transfer Coefficient (HTC) and Critical Heat Flux (CHF) at two different subcooling temperatures is investigated through pool boiling experiments. It is found that the HTC and CHF of the modified surface improved by 42 % and 97 %, respectively. The chemical composition of the coating, as well as changes in surface roughness, wettability, and porosity, are studied using the Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectrometer (EDX), Fourier Transform Infrared (FT-IR) spectroscopy, and contact angle measurement. The boiling/cooling experiments for the plasma-coated surface show good stability, demonstrating that the surface characteristics remain stable even after three boiling/cooling cycles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have