Abstract

This study addresses the combined effects of the location and porosity of a flow straightener on the waste heat recovery performance of a thermoelectric generator (TEG). An exhaust gas channel was built for the flexible placement of a flow straightener with varying porosity in the range of 0.121–0.516 at five different locations. Customized thermoelectric modules were placed between the exhaust gas channel and two coolant channels for waste heat recovery. A diesel engine releases the exhaust gas flow into the exhaust gas channel of the TEG placed in the middle of the tail pipe. Experimental results showed that a TEG design in which a flow straightener is positioned near the inlet of the TEG needs to be avoided because of a low power output to pressure loss ratio. The net power output, energy conversion efficiency, and pressure drop characteristics were enhanced as the location of flow straightener moved rearward of the TEG. A friction factor correlation was also proposed for predicting pressure drop characteristics of TEGs equipped with a flow straightener to improve their practicality in industry and engineering fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.