Abstract

The machining of extremely hard material in conventional machining requires high energy. Therefore stress-free, burr-free, and high-accuracy machining technique like Electro Chemical Micro Machining (ECMM) with extra features is recommended. To improve efficiency, various electrolytes such as Magnet Associated Electrolytes (MGAE), Metal Particle Mixed Electrolytes (MPME), and Carbon Pellets Mixed Electrolytes (CPME) are employed. The micro-holes were drilled over the work material MONEL 400 alloy. The parameters for the studies are electrolyte type, concentration (g/l), machining voltage (V), and duty cycle (%). The responses of ECMM are estimated through material removal rate (MRR) in ?m/sec and overcut in ?m. The results are optimized using Multi-objective optimization based on ratio analysis (MOORA) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). Both techniques produce the same optimal parameter, 18th experiment CPME, 50% duty cycle, 11 V machining voltage, and 28 g/l electrolyte concentration. It is the best optimal parameter solution for machining. According to the ANOVA table of both, the type of electrolyte plays a 62.6% and 60.37% contribution, respectively, to machining performance. Furthermore, the scanning electron microscope (SEM) image analysis perused on the micro holes to extend the effect of different electrolytes on machining surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call