Abstract

Abstract Composite materials are granted first choice in the present manufacturing scenario due to their compatibility with tolerances up to 0.001 mm and lower weight. The research design works on the composites of the metal matrix, which are used primarily for aeronautical and industrial applications. Metal matrix composites are being used extensively in structural engineering. Silicon carbide and fly shell ash were used as compliance in aluminium alloys for the manufacture of metal matrix composites (LM13). The composite metal matrix is created employing Stir Casting method. When compared to open moulding, closed moulding, and cast polymer moulding, it is a less expensive and more effective method. The composites produced were then examined for mechanical properties, from the results it was found that the presence of ash and ceramic grains can adversely impact the properties of the composites and even make them brittle. It is time to change the mechanical properties of aluminium by creating hybrid composites with double and often triple-reinforced sections. Hybrid composites have greater performance, better tolerance to tear, low density, resistance to corrosion and strong rigidity over metal matrix composites. In this research an Al-Sic-fly ash composite is proposed and the mechanical properties of hardness, tensile strength, corrosion strength, micro structure analysis are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call