Abstract
This study investigated erosion during infiltration and overflow events and considered different grain sizes and hydraulic conductivity properties; four experimental cases were conducted under saturated conditions. The importance of understanding flow regimes during overflow experiments including their distinct flow characteristics, shear stresses, and erosion mechanisms in assessing the potential for levee failure are discussed. The failure mechanism of levee slopes during infiltration experiments involves progressive collapse due to piping followed by increased liquefaction and loss of shear stress, with the failure progression dependent on the permeability of the foundation material and shear strength. The infiltration experiments illustrate that the rate of failure varied based on the permeability of the foundation material. In the case of IO-E7-F5, where the levee had No. 7 sand in the embankment and No. 5 sand in the foundation (lower permeability), the failure was slower and limited. It took around 90 min for 65% of the downstream slope to fail, allowing more time for response measures. On the other hand, in the case of IO-E8-F4, with No. 8 sand in the embankment and No. 4 sand in the foundation (higher hydraulic conductivity), the failure was rapid and extensive. The whole downstream slope failed within just 18 min, and the collapse extended to 75% of the levee crest. These findings emphasize the need for proactive measures to strengthen vulnerable sections of levees and reduce the risk of extensive failure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have