Abstract
Experimental studies are carried out to investigate the jet impingement heat transfer characteristics in cross-flow with and without the presence of a 45 deg V-shaped rib. The local heat transfer coefficients are obtained by a liquid crystal thermography (LCT) technique. The ratio of nozzle-to-surface spacing to jet diameter is 3.56, the jet Reynolds number is kept at 17,000, the cross-flow Reynolds number spans from 32,700 to 65,000, the velocity ratio of jet to cross-flow ranges from 1.5 to 3.0. The impingement heat transfer characteristics in cross-flow are changed from the results without the cross-flow, and they are strongly affected by the velocity ratio. The presence of a V-shaped rib significantly modifies the heat transfer patterns of the impinging jet in cross-flow. Compared to the results without ribs, the heat transfer over the ribbed surface is enhanced for a low velocity ratio but retarded for a high velocity ratio, depending on the interaction between the rib induced flow and the impinging jet.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have