Abstract
An experimental investigation of turbulent heat transfer in vertical upward and downward supercritical CO 2 flow was conducted in a circular tube with an inner diameter of 4.5 mm. The experiments were performed for bulk fluid temperatures from 29 to 115 °C, pressures from 74.6 to 102.6 bar, local wall heat fluxes from 38 to 234 kW/m 2, and mass fluxes from 208 to 874 kg/m 2 s. At a moderate wall heat flux and low mass flux, the wall temperature had a noticeable peak value for vertical upward flow, but increased monotonically along the flow direction without a peak value for downward flow. The ratios of the experimental Nusselt number to the value obtained from a reference correlation were compared with Bo * and q + distributions to observe the buoyancy and flow-acceleration effects on heat transfer. In the experimental range of this study, the flow acceleration predominantly affected the heat-transfer phenomena. Based on an analysis of the shear-stress distribution in the turbulent boundary layer and the significant variation of the specific heat across the turbulent boundary layer, a new heat-transfer correlation for vertical upward and downward flow of supercritical pressurized fluid was developed; this correlation agreed with various experimental datasets within ±30%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have