Abstract

At very high speeds, elastohydrodynamic (EHD) films may be considerably thinner than is predicted by classical isothermal regression equations such as that due to Dowson and Hamrock. This may arise because of viscous dissipation, shear thinning, frictional heating or starvation. In this article, the contact between a steel ball and a glass disc over an entrainment speed ranging from 0.05 m s−1 to 20 m s−1 was studied. Two sets of tests were performed. In the preliminary testing, the disc was driven at speeds of up to 20 m s−1 and the ball was driven by tractive rolling against the disc, its speed being determined using a magnetic method. After all possible explanations for the reduction in film thickness at high speeds were considered, it was shown that the results, which fall well below classical predictions, are consistent with inlet shear heating at the observed sliding speeds. Another set of tests was then performed, with both disc and ball driven separately, so that the accuracy of the shear heating theory for different types of oils and at different sliding conditions could be assessed. It was found that the thermal correction factor predicts the trend of film thickness behavior well for the oils tested and is particularly accurate at certain slide–roll ratios (depending on the type of oil). Experimental data were also used to obtain improved coefficients for the correction factor for different types of oil to achieve better prediction of film thickness at high speed throughout the whole range of slide–roll ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.