Abstract
Because a pool scrubbing is important for reducing radioactive aerosols to the environment for a nuclear reactor in a severe accident situation, many researches have been performed. However, decontamination factor (DF) dependence on aerosol concentration was seldom considered in an aerosol number concentration with limited aerosol coagulation. To investigate an existence of DF dependence on the concentration, DF in a pool scrubbing with 2.4 m water submergence was derived from aerosol measurements by light scattering aerosol spectrometers. It was observed that DF increased monotonically with decreasing particle number concentration in a constant thermohydraulic condition: a gradual increase from 10 to 32 in the range of 1.3×1011 - 8.0×1011/m3 at the inlet and a significant increase from 32 to 77 in the range of 3.6×1010 - 1.3×1011/m3. Two validation experiments were conducted in the range with the gradual DF increase to confirm whether the DF dependence is a real pool scrubbing phenomenon. In addition, characteristics of the DF dependence in different water submergences were investigated experimentally. It was found that the DF dependence became more significant in higher water submergence. Significant DF dependence was observed in the condition of the water submergence higher than 1.6 m and the inlet particle number concentration less than around 1×1011 /m3. It is recommended to perform further analysis for the DF dependence mainly in such condition since it could make a difference to both experiment and model of the pool scrubbing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.