Abstract

Experiments at laboratory scales have been conducted to investigate the behaviour of the potential accidental release of highly pressurised CO2 including the rapid depressurization process and jet flow phenomena at different sizes of the leakage nozzle. The dry ice bank formed near the leakage nozzle is affected by the size of the leakage nozzle. The mass outflow rates for different sizes of leakage holes are obtained and compared with two typical accidental gas release mathematical models. The results show that the “hole model” has a better prediction than the “modified model” for small leakage holes. The experiments provide fundamental data for the CO2 supercritical-gas multiphase flows in the leakage process, which can be used to guide the development of the leakage detection technology and risk assessment for the pipeline transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call