Abstract

Capillary-assisted evaporation is a typical heat transfer method in heat pipes which is characterized by high evaporation coefficient due to extremely thin liquid film. This paper introduces such a micro-scale heat transfer method into normal-scale applications. A series of enhanced heat transfer tubes with circumferential rectangular micro-grooves on the outside surfaces have been experimentally investigated. The aim is to investigate the influence of the tubes’ geometries and operating parameters on the evaporation heat transfer coefficients. In the experiment, the tested tubes are hold horizontally and the bottom surfaces are immersed into a pool of liquid. The heat is added to the thin liquid film inside the micro-grooves through the heating fluid flowing inside the tubes. The factors influencing the capillary-assisted evaporation performance, such as the immersion depth, evaporation pressure, superheating degree, etc. are considered. The experimental results have indicated that there is a positive correlation between the evaporation heat transfer coefficient and evaporation pressure, and negative for the superheating and immersion depth. For water, under the evaporation saturated temperature of 5.0±0.1°C, the superheating of 4.0±0.1°C and the dimensionless liquid level of 1/2, the film side evaporation heat transfer coefficients are 3100–3500W/m2K, which are equivalent to those of the falling film evaporator in LiBr–water absorption machine (2800–4500W/m2K [Y.Q. Dai, Y.Q. Zheng, LiBr–water Absorption Machine, first ed., Chinese National Defence Industry Press, Beijing, China, 1980.]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.