Abstract
The high-incidence aerodynamics of a lightweight jet trainer aircraft model has been investigated using a novel five-degree-of-freedom (DOF) dynamic maneuver rig, recently updated with improved actuation and data acquisition systems, in the closed-section low-speed wind tunnel at the University of Bristol. The major focus was to identify the nonlinear and unsteady aerodynamic characteristics specific to the stall region and which affect free-to-move aircraft-model behavior. First, the unstable equilibrium states in the limit-cycle regions were stabilized, and so observed, over a wide range of angles of attack using a simple elevator feedback control law based on pitch angle and pitch-rate sensor measurements. Tests with two DOF, namely, the aircraft model and rig-arm pitch angles, revealed the existence of static hysteresis in the normal force acting on the aircraft model in the stall region. Unlocking the aircraft model in roll and yaw accompanied by feedback stabilization of the lateral–directional modes of motion demonstrated the onset of asymmetric aerodynamic rolling and yawing moments in this four-DOF configuration. This observation implicitly indicates a link between the static hystereses in the normal aerodynamic force with an onset of aerodynamic asymmetry. The experimental results show the efficiency of the updated multi-DOF actively controlled maneuver rig in providing insight into complicated aerodynamic effects within the stall region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.