Abstract
This paper presents some simple feedback control laws to study global stabilization and global synchronization for a special chaotic system described in the generalized Lorenz canonical form (GLCF) when τ = −1 (which, for convenience, we call Shimizu–Morioka system, or simply SM system). For an arbitrarily given equilibrium point, a simple feedback controller is designed to globally, exponentially stabilize the system, and reach globally exponent synchronization for two such systems. Based on the system’s coefficients and the structure of the system, simple feedback control laws and corresponding Lyapunov functions are constructed. Because all conditions are obtained explicitly in terms of algebraic expressions, they are easy to be implemented and applied to real problems. Numerical simulation results are presented to verify the theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.