Abstract
We present experimental results of an exciplex-pumped alkali laser (XPAL) at 780 nm based on the 52P3/2 → 52S1/2 transition of the Rb atom in mixtures of Rb vapor and Ar. A laboratory-built Ti:sapphire laser with a pulse repetition rate of 3 kHz and a pulse width of 100 ns is used as the pump source. The maximum laser pulse energy of 0.26 µJ at 780 nm is obtained under an absorbed pump pulse energy of 42 µJ at 755 nm in mixtures of Rb vapor and Ar at a temperature of 423 K, corresponding to an optical conversion efficiency of 0.62%. Further experiments show that the output laser at 780 nm can always be detected for pump wavelengths ranging from 754 to 759 nm, indicating that Rb–Ar mixtures can be effectively pumped by commercial laser diodes (LDs) with a bandwidth of 5 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.