Abstract

As earthquakes tend to cause ultra-low cycle fatigue failure of spatial grid structures in composite members and joints, this study sets out to test six groups of specimen comprising steel pipes and bolt sphere joints and analyzes the influence of joints and loading systems on failure modes, hysteretic behavior, skeleton curves, stiffness degradation, energy dissipation capacity, and the formation and development of plastic hinges. Results showed that the instability of the specimen in compressive loading led to the occurrence of denting and the formation of plastic hinges. Cracks originated in dented area, and ultra-low cycle fatigue fractures occurred in a dozen cycles. Plastic hinge was located in the middle area of the pipe, and the energy dissipation capacity was limited owing to the confined plastic hinge length. As the joint bending stiffness increased, so did the length of the plastic hinge, the degree of the dent, and the cumulative damage. Early fractures and a reduction in total energy consumption also occurred. Furthermore, a function related to the cumulative damage and macroscopic deformation that can evaluate the damage of the members in spatial grid structures was also established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call