Abstract

Façade systems play an important role in fire compartmentation of a building and reducing the likelihood of fire spreading through and outside of the building walls. The use of sprinklers in building regulations often allows for smaller building separation. However, no additional benefits are usually given to additional internal sprinkler protection of the external glass façade using standard pendant sprinklers. Four compartment fire experiments were performed with non-fire-rated aluminium façades with two- and three-layered Insulating Glass Units (IGU), protected by pendant-type sprinklers (DN15, K-factor = 80, T = 68 °C). Sprinklers were in row 14–55 cm from the glazing, with 1.514–1.83 m separation distance. In all experiments, façades achieved satisfactory performance in terms of glazing integrity, insulation and reducing the thermal radiation. Under a non-uniform water distribution, parts of the glass were dry (1.7%–15.7% of IGU area), where we have observed soot deposition and local damage to fire exposed glass layer, but no loss of the structural integrity. The temperatures on the unexposed side did not exceed 86 °C, the peak measured temperature of the internal glass surface was 173 °C. The performed experiments confirmed the capability of standard pendant-type sprinklers to enhance the fire protection features of a building façade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.