Abstract
The phase relationship of the B-Fe-Mo ternary system has been investigated combining experimental results with thermodynamic modeling. The liquidus projection of the ternary system in the Fe-rich region was constructed by identifying primary crystallization phases in the as-cast alloys and determining liquid temperatures obtained from the DSC analyses. Eight different primary solidification regions were observed, and they are BCC, FCC, Mo2FeB2, Fe2B, FeB, σ, and R, respectively. And four invariant reactions were identified in the Fe-rich region. Thermodynamic optimization of the B-Fe-Mo ternary system was performed using CALPHAD approach based on the thermodynamic models of the three constitutional binary systems and the experimental results of the ternary system. A set of self-consistent thermodynamic parameters for the B-Fe-Mo system were obtained with reasonable agreement between the experimental and calculated results.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have