Abstract

This article presents a crystal plasticity methodology to evaluate the AA1050 sheet formability. In order to determine the orientation distribution of the crystals, initial texture of the material is measured through X-ray diffraction technique. Also, the stress–strain behavior of the material is determined by performing tensile test. In order to simulate the path-dependent crystal plasticity behavior of body-centered cubic crystal structures, a UMAT subroutine that employs the rate-dependent crystal plasticity model along with the power law hardening was developed previously by the authors and linked to the finite element software ABAQUS. This subroutine was further developed to simulate face-centered cubic crystal structures. The second-order derivative of sheet thickness variations with respect to time is considered as the instability factor, and forming limit diagram of the material is predicted. In order to assess the validity of formability prediction results for face-centered cubic materials, forming limit diagram of AA1050 sheet is also experimentally extracted by conducting hemi-spherical punch test. It is observed that the predicted forming limit diagram is in agreement with the experimental results. Finally, the prediction accuracy in different regions of forming limit diagram is discussed and some suggestions for further improving the accuracy are made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.